聚类分析算法
聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法,同时也是数据挖掘的一个重要算法。聚类分析是由若干模式组成的,通常,模式是一个度量的向量,聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。
对于聚类算法,大多数用SPSS软件实现,通常导入数据,并且选择聚类方法即可实现,本节借用MATLAB软件,基于14种不同的聚类分析方法,实现样品聚类。
14种聚类方法
(1)最长距离法
X=[16.214922000-8.26.2;
15.79702209-20.61.9;
16.312602085-17.32.8;
17.214221726-9.54.6;
18.818741709-4.98.0;
17.916981848-4.57.5;
16.39761239-4.65.6];
D=pdist(X,'euclid');
M=squareform(D);
Z=linkage(D,'complete');
H=dendrogram(Z);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);


(2) 最短距离法
X=[16.214922000-8.26.2;
15.79702209-20.61.9;
16.312602085-17.32.8;
17.214221726-9.54.6;
18.818741709-4.98.0;
17.916981848-4.57.5;
16.39761239-4.65.6];
D=pdist(X,'euclid');
M=squareform(D);
Z=linkage(D,'single')
;H=dendrogram(Z);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,'cutoff',0.8);


(3)综合聚类子程序
X=[16.214922000-8.26.2;
15.79702209-20.61.9;
16.312602085-17.32.8;
17.214221726-9.54.6;
18.818741709-4.98.0;
17.916981848-4.57.5;
16.39761239-4.65.6];
T=clusterdata(X,0.8);
Re=find(T=5)
(4)重心法&标准欧氏距离
S=['福冈';'合肥';'武汉';'长沙';'桂林';'温州';'成都'];
X=[16.214922000-8.26.2;
15.79702209-20.61.9;
16.312602085-17.32.8;
17.214221726-9.54.6;
18.818741709-4.98.0;
17.916981848-4.57.5;
16.39761239-4.65.6];
D=pdist(X,'seuclid');
M=squareform(D);
Z=linkage(D,'centroid');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);


(5)重心法&欧氏距离平方
S=['福冈';'合肥';'武汉';'长沙';'桂林';'温州';'成都'];
X=[16.214922000-8.26.2;
15.79702209-20.61.9;
16.312602085-17.32.8;
17.214221726-9.54.6;
18.818741709-4.98.0;
17.916981848-4.57.5;
16.39761239-4.65.6];
D=pdist(X,'euclid');
D2=D.^2;
M=squareform(D2);
Z=linkage(D2,'centroid');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D2);
T=cluster(Z,3);


(6)重心法&精度加权距离
S=['福冈';'合肥';'武汉';'长沙';'桂林';'温州';'成都'];
X=[16.214922000-8.26.2;
15.79702209-20.61.9;
16.312602085-17.32.8;
17.214221726-9.54.6;
18.818741709-4.98.0;
17.916981848-4.57.5;
16.39761239-4.65.6];
[n,m]=size(X);
stdx=std(X);
X2=X./stdx(ones(n,1),:);
D=pdist(X2,'euclid');
M=squareform(D);
Z=linkage(D,'centroid');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);


(7)最短距离法&基于主成分的标准欧式距离
S=['福冈';'合肥';'武汉';'长沙';'桂林';'温州';'成都'];
X=[16.214922000-8.26.2;
15.79702209-20.61.9;
16.312602085-17.32.8;
17.214221726-9.54.6;
18.818741709-4.98.0;
17.916981848-4.57.5;
16.39761239-4.65.6];
[E,score,eigen,T]=princomp(X);
D=pdist(score,'seuclid');
M=squareform(D);
Z=linkage(D,'single');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);


(8)平均法&标准欧式距离
S=['福冈';'合肥';'武汉';'长沙';'桂林';'温州';'成都'];
X=[16.214922000-8.26.2;
15.79702209-20.61.9;
16.312602085-17.32.8;
17.214221726-9.54.6;
18.818741709-4.98.0;
17.916981848-4.57.5;
16.39761239-4.65.6];
D=pdist(X,'seuclid');
M=squareform(D);
Z=linkage(D,'average');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);


(9)权重法&标准欧式距离
S=['福冈';'合肥';'武汉';'长沙';'桂林';'温州';'成都'];
X=[16.214922000-8.26.2;
15.79702209-20.61.9;
16.312602085-17.32.8;
17.214221726-9.54.6;
18.818741709-4.98.0;
17.916981848-4.57.5;
16.39761239-4.65.6];
D=pdist(X,'seuclid');
M=squareform(D);
Z=linkage(D,'weighted');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);


(10)最短距离法&马氏距离
S=['福冈';'合肥';'武汉';'长沙';'桂林';'温州';'成都'];
X=[16.214922000-8.26.2;
15.79702209-20.61.9;
16.312602085-17.32.8;
17.214221726-9.54.6;
18.818741709-4.98.0;
17.916981848-4.57.5;
16.39761239-4.65.6];
D=pdist(X,'mahal');M=squareform(D);Z=linkage(D,'single');H=dendrogram(Z,'labels',S);xlabel('City');ylabel('Scale');C=cophenet(Z,D);T=cluster(Z,3);


(11)重心法&标准化数据的的欧式距离
S=['福冈';'合肥';'武汉';'长沙';'桂林';'温州';'成都'];
X=[16.214922000-8.26.2;
15.79702209-20.61.9;
16.312602085-17.32.8;
17.214221726-9.54.6;
18.818741709-4.98.0;
17.916981848-4.57.5;
16.39761239-4.65.6];
[n,m]=size(X);
mv=mean(X);
st=std(X);
x=(X-mv(ones(n,1),:))./st(ones(n,1),:);
D=pdist(X,'euclid');
M=squareform(D);
Z=linkage(D,'centroid');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);


(12)最长距离法&欧式距离
S=['福冈';'合肥';'武汉';'长沙';'桂林';'温州';'成都'];
X=[16.214922000-8.26.2;
15.79702209-20.61.9;
16.312602085-17.32.8;
17.214221726-9.54.6;
18.818741709-4.98.0;
17.916981848-4.57.5;
16.39761239-4.65.6];
D=pdist(X,'euclid');
M=squareform(D);
Z=linkage(D,'complete');
[HtPerm]=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);


(13)平均法&相似系数
S=['福冈';'合肥';'武汉';'长沙';'桂林';'温州';'成都'];
X=[16.214922000-8.26.2;
15.79702209-20.61.9;
16.312602085-17.32.8;
17.214221726-9.54.6;
18.818741709-4.98.0;
17.916981848-4.57.5;
16.39761239-4.65.6];
D=pdist(X,'cosine');
M=squareform(D);
Z=linkage(D,'centroid');
T=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);


(14)最短距离法&基于主成分的标准欧式距离
S=['福冈';'合肥';'武汉';'长沙';'桂林';'温州';'成都'];
X=[16.214922000-8.26.2;
15.79702209-20.61.9;
16.312602085-17.32.8;
17.214221726-9.54.6;
18.818741709-4.98.0;
17.916981848-4.57.5;
16.39761239-4.65.6];
[E,score,eigen,T]=princomp(X);
PCA=[score(:,1),score(:,2)];
D=pdist(PCA,'seuclid');
M=squareform(D);
Z=linkage(D,'single');
H=dendrogram(Z,'labels',S);
xlabel('City');
ylabel('Scale');
C=cophenet(Z,D);
T=cluster(Z,3);

